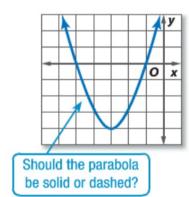
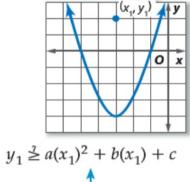
4-8 Graph Quadratic Inequalities

Graph Quadratic Inequalities You can graph quadratic inequalities in two variables by using the same techniques used to graph linear inequalities in two variables.

Step 1 Graph the related function.

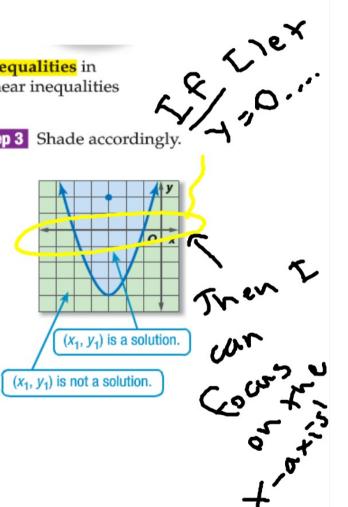


Step 2 Test a point not on the parabola.



Is (x_1, y_1) a solution?

Step 3 Shade accordingly.



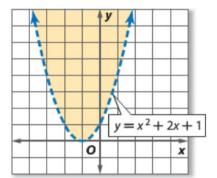
Example 1 Graph a Quadratic Inequality

Graph $y > x^2 + 2x + 1$.

- **Step 1** Graph the related function, $y = x^2 + 2x + 1$. The parabola should be dashed.
- Step 2 Test a point not on the graph of the parabola.

$$y > x^2 + 2x + 1$$

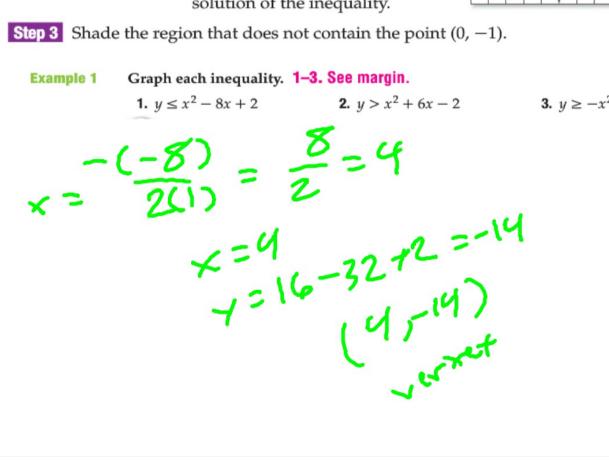
 $-1 \stackrel{?}{>} 0^2 + 2(0) + 1$
 $-1 \not> 1$ So, $(0, -1)$ is *not* a solution of the inequality.



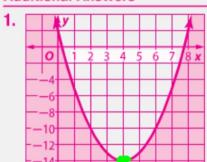
1.
$$y \le x^2 - 8x + 2$$

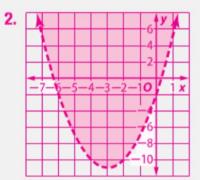
2.
$$y > x^2 + 6x - 2$$

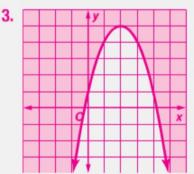
1.
$$y \le x^2 - 8x + 2$$
 2. $y > x^2 + 6x - 2$ **3.** $y \ge -x^2 + 4x + 1$



Additional Answers







Example 2 Solve $ax^2 + bx + c < 0$ by Graphing

Solve $x^2 + 2x - 8 < 0$ by graphing.

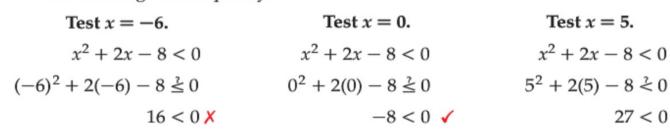
The solution consists of x-values for which the graph of the related function lies below the *x*-axis. Begin by finding the roots of the related function.

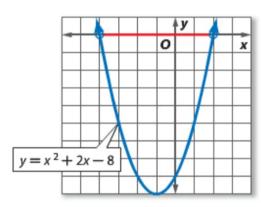
$$x^2 + 2x - 8 = 0$$
 Related equation $(x - 2)(x + 4) = 0$ Factor. $x - 2 = 0$ or $x + 4 = 0$ Zero Product Property $x = 2$ $x = -4$ Solve each equation.

Sketch the graph of a parabola that has x-intercepts at -4 and 2. The graph should open up because a > 0.

The graph lies below the *x*-axis between x = -4and x = 2. Thus, the solution set is $\{x \mid -4 < x < 2\}$ or (-4, 2).

CHECK Test one value of x less than -4, one between -4 and 2, and one greater than 2 in the original inequality.





Test
$$x = 5$$
.
 $x^2 + 2x - 8 < 0$
 $5^2 + 2(5) - 8 < 0$
 $27 < 0 \times 8$

Example 3 Solve $ax^2 + bx + c \ge 0$ by Graphing

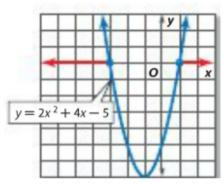
Solve $2x^2 + 4x - 5 \ge 0$ by graphing.

The solution consists of *x*-values for which the graph of the related function lies *on and above* the *x*-axis. Begin by finding the roots of the related function.

$$2x^2 + 4x - 5 = 0$$
 Related equation
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Use the Quadratic Formula
$$x = \frac{-4 \pm \sqrt{4^2 - 4(2)(-5)}}{2(2)}$$
 Replace a with 4 , b with 2 , and c with -5 .
$$x = \frac{-4 + \sqrt{56}}{4}$$
 or $x = \frac{-4 - \sqrt{56}}{4}$ Simplify and write as two equations.
$$\approx 0.87$$

$$\approx -2.87$$
 Simplify.

Sketch the graph of a parabola with x-intercepts at -2.87 and 0.87. The graph opens up since a > 0. The graph lies on and above the x-axis at about $x \le -2.87$ and $x \ge 0.87$. Therefore, the solution is approximately $\{x \mid x \le -2.87 \text{ or } x \ge 0.87\}$ or $(-\infty, -2.87] \cup [0.87, \infty)$.



Examples 2-3 CSS SENSE-MAKING Solve each inequality by graphing.

4.
$$0 < x^2 - 5x + 4$$
 { $x \mid x < 1 \text{ or } x > 4$ } **5.** $x^2 + 8x + 15 < 0$ { $x \mid -5 < x < -3$ }

5.
$$x^2 + 8x + 15 < 0$$
 $\{x \mid -5 < x < -3\}$

6.
$$-2x^2 - 2x + 12 \ge 0$$
 $\{x \mid -3 \le x \le 2\}$

6.
$$-2x^2 - 2x + 12 \ge 0$$
 $\{x \mid -3 \le x \le 2\}$ 7. $0 \ge 2x^2 - 4x + 1 \cdot \{x \mid 0.29 \le x \le 1.71\}$

$$(4) x^{2} - 5x + 4 > 0$$

$$(x-1)(x-4) = 0$$

$$(x$$

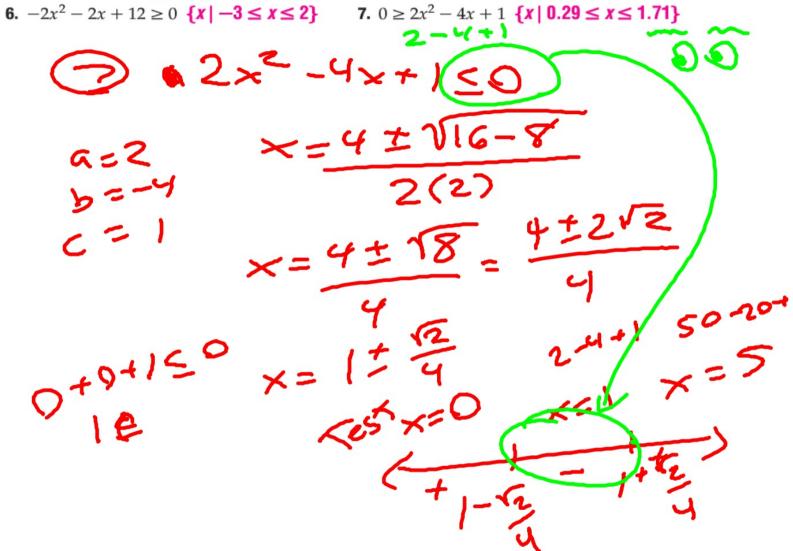
Examples 2-3 CCSS SENSE-MAKING Solve each inequality by graphing.

4.
$$0 < x^2 - 5x + 4 \{x \mid x < 1 \text{ or } x > 4\}$$

4.
$$0 < x^2 - 5x + 4$$
 { $x \mid x < 1 \text{ or } x > 4$ } **5.** $x^2 + 8x + 15 < 0$ { $x \mid -5 < x < -3$ }

6.
$$-2x^2 - 2x + 12 \ge 0$$
 $\{x \mid -3 \le x \le 2\}$

7.
$$0 \ge 2x^2 - 4x + 1$$
 $\{x \mid 0.29 \le x \le 1.71\}$



Real-World Example 4 Solve a Quadratic Inequality

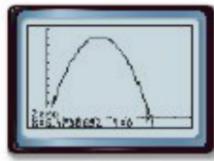
WATER BALLOONS Refer to the beginning of the lesson. At what time will a water balloon be within 3 meters of the ground after it has been launched?

The function $h(t) = -4.9t^2 + 32t + 1.2$ describes the height of the water balloon. Therefore, you want to find the values of t for which $h(t) \le 3$.

$$h(t) \le 3$$
 Original inequality $-4.9t^2 + 32t + 1.2 \le 3$ $h(t) = -4.9t^2 + 32t + 1.2$ Subtract 3 from each side.

Graph the related function $y = -4.9x^2 + 32x - 1.8$ using a graphing calculator. The zeros of the function are about 0.06 and 6.47, and the graph lies below the x-axis when x < 0.06 and x > 6.47.

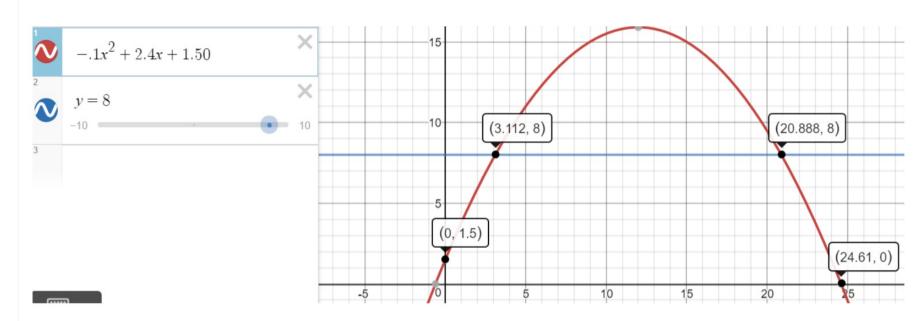
So, the water balloon is within 3 meters of the ground during the first 0.06 second after being launched and again after about 6.47 seconds until it hits the ground.



[-1, 9] scl: 1 by [-5, 55] scl: 5

Example 4

8. SOCCER A midfielder kicks a ball toward the goal during a match. The height of the ball in feet above the ground h(t) at time t can be represented by $h(t) = -0.1t^2 + 2.4t + 1.5$. If the height of the goal is 8 feet, at what time during the kick will the ball be able to enter the goal? $\{t \mid 0 < t < 3.11\}$ or $\{t \mid 20.89 < t \le 24.61\}$



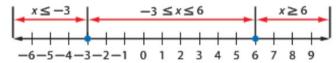
Example 5 Solve a Quadratic Inequality Algebraically

Solve $x^2 - 3x \le 18$ algebraically.

Step 1 Solve the related quadratic equation $x^2 - 3x = 18$.

$$x^2-3x=18$$
 Related quadratic equation $x^2-3x-18=0$ Subtract 18 from each side. $(x+3)(x-6)=0$ Factor. $x+3=0$ or $x-6=0$ Zero Product Property $x=-3$ $x=6$ Solve each equation.

Plot -3 and 6 on a number line. Use dots since these values are solutions of the original inequality. Notice that the number line is divided into three intervals.



Step 3 Test a value from each interval to see if it satisfies the original inequality.

$$x \leq -3$$

$$-3 \le x \le 6$$

$$x \ge 6$$

Test
$$x = -5$$
. Test $x = 0$. Test $x = 8$.

Test
$$x = 0$$
.

Test
$$x = 8$$
.

$$x^2 - 3x \le 18$$

$$x^2 - 3x \le 18$$

$$x^2 - 3x \le 18$$
 $x^2 - 3x \le 18$ $x^2 - 3x \le 18$

$$(-5)^2 - 3(-5) \stackrel{?}{\le} 18$$
 $(0)^2 - 3(0) \stackrel{?}{\le} 18$ $(8)^2 - 3(8) \stackrel{?}{\le} 18$

$$(0)^2 - 3(0) \stackrel{?}{<} 18$$

$$(8)^2 - 3(8) \stackrel{?}{\leq} 18$$

$$0 \le 18$$

The solution set is $\{x \mid -3 \le x \le 6\}$ or [-3, 6].

Example 5

Solve each inequality algebraically.

9.
$$x^2 + 6x - 16 < 0$$
 {x | -8 < x < 2} 10. $x^2 - 14x > -49$ {x | x < 7 or x > 7}

10.
$$x^2 - 14x > -49$$
 {x | x < 7 or x > 7}

11
$$-x^2 + 12x \ge 28$$
 { $x \mid 3.17 \le x \le 8.83$ } 12. $x^2 - 4x \le 21$ { $x \mid -3 \le x \le 7$ }

12.
$$x^2 - 4x \le 21$$
 $\{x \mid -3 \le x \le 7\}$

ractice and Problem Solving

Extra Practice is on page R4.

Example 1

Graph each inequality. 13-18. See margin.

13.
$$y \ge x^2 + 5x + 6$$

14.
$$x^2 - 2x - 8 < y$$

13.
$$y \ge x^2 + 5x + 6$$
 14. $x^2 - 2x - 8 < y$ **15.** $y \le -x^2 - 7x + 8$

16.
$$-x^2 + 12x - 36 > y$$

17.
$$y > 2x^2 - 2x - 3$$

16.
$$-x^2 + 12x - 36 > y$$
 17. $y > 2x^2 - 2x - 3$ **18.** $y \ge -4x^2 + 12x - 7$

8.42}

19.
$$\{x \mid 1.1 < x < 7.9\}$$
 20. $\{x \mid -4 \le x \le 6\}$

Examples 2-3 Solve each inequality by graphing. 21. (all real numbers) 22. $\{x \mid x < -5.45 \text{ or } x > -0.55\}$

19.
$$x^2 - 9x + 9 < 0$$

20.
$$x^2 - 2x - 24 \le 0$$

21.
$$x^2 + 8x + 16 \ge 0$$

26.
$$\{x \mid -2.30 \text{ } 22. \ x^2 + 6x + 3 > 0 \}$$

23.
$$0 > -x^2 + 7x + 12$$
 24. $-x^2 + 2x - 15 < 0$

24.
$$-x^2 + 2x - 15 < 0$$

$$< x < 1.30$$
} 25.

$$\langle x < 1.30 \rangle$$
 25. $4x^2 + 12x + 10 \le 0$ 26. $-3x^2 - 3x + 9 > 0$ 27. $0 > -2x^2 + 4x + 4$

26.
$$-3x^2 - 3x + 9 > 0$$

27.
$$0 > -2x^2 + 4x + 4$$

x > 2.73

28.
$$3x^2 + 12x + 36 \le 0$$
 29. $0 \le -4x^2 + 8x + 5$ **30.** $-2x^2 + 3x + 3 \le 0$

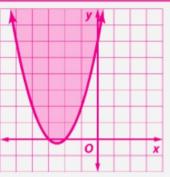
29.
$$0 \le -4x^2 + 8x + 5$$
 $\{x \mid -0.5 \le x \le 2.5\}$

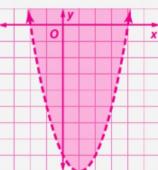
30.
$$-2x^2 + 3x + 3 \le 0$$

{ $x \mid x \le -0.69 \text{ or } x \ge 2.19$ }

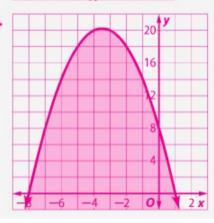
Additional Answers

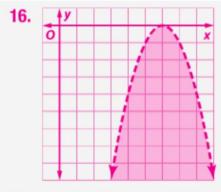
13.

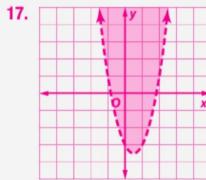




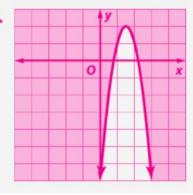
15.







18.



24. {all real numbers}

19.
$$x^2 - 9x + 9 < 0$$

20.
$$x^2 - 2x - 24 \le 0$$

21.
$$x^2 + 8x + 16 \ge 0$$

$$24 \leq$$

24. $-x^2 + 2x - 15 < 0$

26. $\{x \mid -2.30 \ 22. \ x^2 + 6x + 3 > 0 \}$ < x < 1.30

25.
$$4x^2 + 12x + 10 \le 0$$
 Ø

23.
$$0 > -x^2 + 7x + 12$$

26. $-3x^2 - 3x + 9 > 0$

27.
$$0 > -2x^2 + 4x + 4$$

27. $\{x \mid x < 1\}$ -0.73 or x > 2.73

28.
$$3x^2 + 12x + 36 \le 0$$
 \emptyset

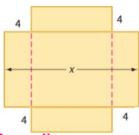
29.
$$0 \le -4x^2 + 8x + 5$$
 $\{x \mid -0.5 \le x \le 2.5\}$

30.
$$-2x^2 + 3x + 3 \le 0$$
 { $x \mid x \le -0.69 \text{ or } x \ge 2.19$ }

Example 4

(31) ARCHITECTURE An arched entry of a room is shaped like a parabola that can be represented by the equation $f(x) = -x^2 + 6x + 1$. How far from the sides of the arch is its height at least 7 feet? about 1.26 ft to 4.73 ft

32. MANUFACTURING A box is formed by cutting 4-inch squares from each corner of a square piece of cardboard and then folding the sides. If $V(x) = 4x^2 - 64x + 256$ represents the volume of the box, what should the dimensions of the original piece of cardboard be if the volume of the box cannot exceed 750 cubic inches? greater than 8 in. but no more than 21.69 in.



Example 5

Solve each inequality algebraically. 33-44. See Chapter 4 Answer Appendix.

33.
$$x^2 - 9x < -20$$

34.
$$x^2 + 7x \ge -10$$

35.
$$2 > x^2 - x$$

36.
$$-3 \le -x^2 - 4x$$

37.
$$-x^2 + 2x \le -10$$

38.
$$-6 > x^2 + 4x$$

39.
$$2x^2 + 4 \ge 9$$

40.
$$3x^2 + x \ge -3$$

41.
$$-4x^2 + 2x < 3$$

42.
$$-11 \ge -2x^2 - 5x$$

43.
$$-12 < -5x^2 - 10x$$

44.
$$-3x^2 - 10x > -1$$

Lesson 4-8

33.
$$\{x \mid 4 < x < 5\}$$

34.
$$\{x \mid x \le -5 \text{ or } x \ge -2\}$$

35.
$$\{x \mid -1 < x < 2\}$$

36.
$$\{x \mid -4.65 \le x \le 0.65\}$$

37.
$$\{x \mid x \le -2.32 \text{ or } x \ge 4.32\}$$

39.
$$\{x \mid x \le -1.58 \text{ or } x \ge 1.58\}$$

42.
$$\{x \mid x \le -3.91 \text{ or } x \ge 1.41\}$$

43.
$$\{x \mid -2.84 < x < 0.84\}$$

44.
$$\{x \mid -3.43 < x < 0.10\}$$