4-7 Study Guide and Intervention

Transformations of Quadratic Graphs

Write Quadratic Equations in Vertex Form A quadratic function is easier to graph when it is in vertex form. You can write a quadratic function of the form $y = ax^2 + bx + c$ in vertex from by completing the square.

Example

Write $y = 2x^2 - 12x + 25$ in vertex form. Then graph the function.

$$y = 2x^2 - 12x + 25$$

$$y = 2(x^2 - 6x) + 25$$

$$y = 2(x^2 - 6x + 9) + 25 - 18$$

$$y = 2(x - 3)^2 + 7$$

The vertex form of the equation is $y = 2(x - 3)^2 + 7$.

Lesson 4-7

Exercises

Write each equation in vertex form. Then graph the function.

$$1. y = x^2 - 10x + 32$$

$$y = (x - 5)^2 + 7$$

2.
$$y = x^2 + 6x$$

$$y = (x + 3)^2 - 9$$

3.
$$y = x^2 - 8x + 6$$

 $y = (x - 4)^2 - 10$

$$4. y = -4x^2 + 16x - 11$$

$$y = -4(x-2)^2 + 5$$

$$5. y = 3x^2 - 12x + 5$$

$$y = 3(x-2)^2 - 7$$

6.
$$y = 5x^2 - 10x + 9$$

$$y = 5(x-1)^2 + 4$$

Study Guide and Intervention 4-7

(continued)

Transformations of Quadratic Graphs

Transformations of Quadratic Graphs Parabolas can be transformed by changing the values of the constants a, h, and k in the vertex form of a quadratic equation: $y = a(x - h)^2 + k.$

- The sign of a determines whether the graph opens upward (a > 0) or downward (a < 0).
- The absolute value of a also causes a dilation (enlargement or reduction) of the parabola. The parabola becomes narrower if |a| > 1 and wider if |a| < 1.
- The value of h translates the parabola horizontally. Positive values of h slide the graph to the right and negative values slide the graph to the left.
- The value of k translates the graph vertically. Positive values of k slide the graph upward and negative values slide the graph downward.

Example

Graph $v = (x + 7)^2 + 3$.

- Rewrite the equation as $y = [x (-7)]^2 + 3$.
- Because h = -7 and k = 3, the vertex is at (-7, 3). The axis of symmetry is x = -7. Because a = 1, we know that the graph opens up, and the graph is the same width as the graph of $y = x^2$.
- Translate the graph of $y = x^2$ seven units to the left and three units up.

Exercises

Graph each function.

1.
$$y = -2x^2 + 2$$

2.
$$y = -3(x-1)^2$$

3.
$$y = 2(x+2)^2 + 3$$

